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 Abstract - This paper addresses the problem of making the 
best use of computing and buffer resources in systems that 
operate in dynamic environments. The problem is addressed by 
providing solutions for system specification, performance 
monitoring, allocation optimization, and allocation enactment. 
This paper presents these solutions and shows how they have 
been applied to a prototype of a potential satellite system of the 
near future. 

 This approach has several drawbacks. Operations costs are 
high, because satellites require full-time ground support to 
monitor and maintain satellite health, and engineers are 
required to solve resource allocation anomalies that may 
occur onboard. The benefit obtained from satellite operations 
is sometimes sub-optimal, because valuable data may be 
discarded when a buffer is full of less valuable data. 
Furthermore, the system has limited capabilities for graceful 
degradation when computing and storage resources become 
overloaded due to anomalies. Finally, errors and allocation 
anomalies may persist for prolonged periods of time because 
monitoring and maintenance of satellite health and safety 
data is performed offline. 

 
I. INTRODUCTION 

 
 NASA satellite and robot systems operate in dynamic 
environments, wherein the conditions cannot be known a 
priori. Thus, the ability for these systems to adapt 
dynamically is critical. If they cannot adapt, then the return 
on investment for these systems is likely to be much less than 
could be achieved otherwise. Furthermore, autonomous 
adaptation is desirable, due to the complexities involved in 
determining appropriate adaptations and because of the high 
latencies in commanding the adaptations from the earth.  

 This paper shows how to address these drawbacks with 
adaptive resource management middleware that operates 
online and allocates computing and storage resources 
optimally. The technology is useful for onboard satellite 
systems as well as for robotic systems. Specifically, it will 
(1) enable satellites to autonomously decide which data 
should be captured and stored, and (2) allow robots to 
determine dynamically how to best use their computing 
resources, to plan, to analyze, to explore, etc. 

 This paper addresses the problem of making the best use 
of computing and buffer resources for systems that operate in 
dynamic environments. To understand the problem, consider 
current earth-observing satellites, which have the following 
properties: 

 The problem is addressed by providing solutions for 
system specification, performance monitoring, allocation 
optimization, and allocation enactment. The remainder of 
this paper presents these solutions and shows how they have 
been applied to a prototype of a futuristic satellite system. 

• Software processes are allocated to computing and 
storage resources statically. 

 • Collected scientific data is stored in a buffer and 
downloaded in first-in-first-out (FIFO) order. II. RESOURCE MANAGER 

 • Algorithms are designed to have only a single version 
that runs at a fixed fidelity.  In previous years, the authors of this paper have 

developed adaptive resource management [1] middleware 
solutions primarily in the context of dynamic shipboard 
computing [2].  Recent efforts have applied adaptive 
middleware solutions to satellite systems [3]. The initial 
prototype of the architecture presented in this paper is 
discussed in [4], and a description of how to use benefit 
functions is given in [5].  The middleware architecture 
presented in this paper is depicted in Fig. 1. 

• Buffer overflow is handled by simply discarding any 
scientific data that is collected after the buffer is full, 
even though the new data may be more valuable than 
data that is already stored in the buffer. 
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Fig 1. Architecture of the resource management middleware. 

 
 The real-time application system (RTAS) consists of 
one or more groups of tasks that have real-time constraints 
(these task groups are called paths). The tasks in a group may 
be distributed. Some tasks, task groups or systems may be 
able to run at varying qualities of service, depending on 
resource availability and on performance requirements. For 
example, at its highest quality of service, an image-
processing algorithm would process every pixel in each 
image, and at a degraded quality of service it would ignore 
some pixels.  
 Each RTAS is managed by a meta-agent (MA), which 
monitors the real-time performance of the subsystem and 
determines when resource reallocations are necessary for 
maintaining adequate performance. To perform its task, an 
MA receives information on performance and resource needs 
from the RTAS and obtains data about each RTAS’s relevant 
features (e.g., its structure and its real-time requirements). 
When a MA determines that its RTAS needs additional 
resources, it notifies the service quality optimizer.  
 The service quality optimizer (SQO) makes adjustments 
in quality-of-service (QoS) levels of one or more RTASs in 
order to satisfy requests from MAs. Upon receiving a request 
from an MA, the SQO determines if it is possible to satisfy 
the resource demands by adjusting QoS levels of RTASs.  In 
addition to checking constraint feasibility, the SQO also 
considers the overall scientific benefit (called utility) that 
results from various QoS combinations, and selects the 
combination that yields the highest utility. Upon finding a 
suitable allocation, the SQO notifies the MAs of any QoS 
level changes that must be made.  If the SQO cannot find a 
feasible allocation, it requests a reallocation of resources 
from the resource allocation optimizer.  
 The resource allocation optimizer (RAO) determines the 
best way to allocate resources to application systems.  Its 
main task is to assign tasks to processors. To do this, it 
considers the utility that would result from various 
assignments and chooses the assignment with the highest 

utility. To make decisions about the suitability of allocations, 
the RAO obtains information from the resource monitoring 
component. The resource control component carries out 
reallocation decisions. 
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III. USEFULNESS FOR ONBOARD PROCESSING 

IN SATELLITE SYSTEMS 
 
 The resource management middleware has been applied to 
prototype software that is being developed under an ESTO-
funded grant for possible use on future autonomous satellite 
systems The prototype contains software components that 
perform the following tasks:  simulation of image capture by 
a camera, analysis of the captured images by an image 
processing agent (IPA), compression of images by a 
compression agent (CA), production of simulated health and 
safety information about the satellite by a health and safety 
data agent (HSDA), and download of data by the data 
management agent (DMA). 
 Resource management was applied to the Image 
Processing Subsystem, which contains a simulated camera 
sensor that collects image data, an agent (IPA) processes the 
data, and an actuator (CA) takes an action based on the 
results of processing the data.  The entire processing “path” 
from camera through CA has a timing requirement. 
 The camera captures raw images of the Earth based on a 
schedule.  The extrinsic attribute observation_importance 
specifies how important the area of observation is to the user.  
The extrinsic attribute frequency specifies the image capture 
rate. Both extrinsic attributes are reported to the Meta-Agent. 
 The Image Processing Agent (IPA) uses a simplified 
NOAA algorithm to calculate the cloud cover in an image to 
help establish the benefit of that image.  The algorithm has 
been modified to skip pixels in order to speed up calculation, 
thus varying the amount of processing time required.  The 
number of pixels processed is controlled by the service 
attribute pixels set by the Meta-Agent.  The extrinsic attribute 
cloud_cover is reported to the Meta-Agent. 
 The Compressor Agent (CA) uses various compression 
algorithms on images presented to it by the IPA.  
Compression algorithms include no compression, lossless 
compression, lossy compression, and discarding an image.  
The compression algorithm, and thus resource usage, of the 
CA depends on the service attribute compression. 
 The Health and Safety Data Agent (HSDA) produces 
variable amounts of information about various metrics to 
help engineers on the ground quickly diagnose satellite 
problems.  The amount of data the HSDA stores into the 
buffer is determined based on the service attributes: 
power_service, pressure_service and temperature_service.  
The HSDA passes the extrinsic attributes power, temperature 
and pressure to the Meta-Agent as measured from sensors on 
the satellite. 
 The Data Management Agent (DMA) keeps a record of all 
the data elements in the buffer and their associated download 
priorities. When the network downlink is available, the data 



transfer process will connect to a data receiver and begin 
downloading the data in order by highest priority first.  The 
priority of data is determined by the subsystem that produced 
the data and the extrinsic attributes related to the data such as 
the cloud-cover of an image.  A confirmation of download 
for the data is sent to the satellite from the ground. 
 To better demonstrate the concept of operation for the 
prototype system under the control of the adaptive resource 
manager (ARM), consider the following example.  Assume 
that all the ARM middleware is running on the system.  
When the camera, IPA, CA, HSDA, and DMA are started, 
the Allocation Manager Agent allocates agents to resources 
to maximize benefit and meet deadlines using default values 
for extrinsic attributes. 
 According to an a priori schedule, the camera reports the 
extrinsic attributes of observation_importance and frequency 
to the Meta-Agent, and takes an image of the Earth.  The 
Meta-Agent sets the service attribute pixels for the IPA based 
on the available resources and the expected cloud_cover.  
The IPA processes the image and updates the Meta-Agents 
expectation of cloud_cover.  Based on the available 
resources and the actual cloud-cover, the Meta-Agent sets the 
compression service attribute for the CA.  The CA 
compresses the image and stores it in the buffer. 
 The resource manager has several options when choosing 
the compression service level.  Based on user-defined benefit 
functions, a high value for the cloud_cover may indicate that 
the Meta-Agent should choose a high compression method 
since the image probably has little scientific benefit.  This 
reduces the amount of space used in the buffer in order to 
make room for future images and health and safety data that 
may provide greater benefit.  If there is little cloud_cover , 
the Meta-Agent notifies the Global Meta-Agent that the use 
of more buffer would produce more benefit than previously 
expected. The Global Meta-Agent evaluates the request for 
improving the service provided to the IPS, and may ask the 
Allocation Manager Agent for a new allocation or adjust the 
allowable service attributes for each sub-system based on 
overall system benefit.  When the cloud_cover increases to a 
high value, the Meta-Agent reports lower benefit values 
received from running the sub-system with the current 
amount of resources available.  The Global Meta-Agent may 
restrict the amount of resources that the sub-system is 
receiving by either asking for a reallocation or by altering the 
allowable service attributes through the Meta-Agent. 
 When the satellite is found to have normal extrinsic 
attribute values for temperature, power and pressure, the 
HSDA produces a normal or low amount of health and safety 
data.  When power, pressure or temperature significantly 
deviates from the norm, the Meta-Agent sets the service 
attributes power_service, temperature_service or 
pressure_service to a higher value depending on what 
extrinsic attributes are abnormal.  The degree to which the 
Meta-Agent will increase the service attribute depends on the 
amount of resources available for storing the data.   
 

 The interactions between sub-systems, such as the IPA 
and HSDA’s competition for buffer space, can become quite 
complicated.  Changing the service attributes associated with 
an agent may not adhere to monotonic properties in all 
resources.  For example, changing the compression service 
attribute associated with the CA may increase processing 
requirements when increased but, at the same time, may 
decrease buffer requirements.  The optimization framework 
must ensure that trade-offs between granting resources to one 
sub-system as opposed to another are weighed and evaluated 
in full to obtain optimality.  This is a computationally 
prohibitive problem, but the use of a hierarchical agent-based 
architecture allows lower-level agents (Meta-Agents) to 
refine near-maximized benefit solutions proposed by higher-
level agents (the Allocation Manager Agent and the Global 
Meta-Agent) to approach maximized benefit in real-time. 
 

IV. CONCLUSIONS 
 
 One of the current trends in spacecraft software design is 
to increase the autonomy of onboard flight and science 
software.  For many science missions, the ability of the 
spacecraft to autonomously respond in real-time to 
unpredicted science events is crucial for mission success. 
This paper presents resource management middleware that 
employs utility theory to optimize the real-time performance 
of application software and to achieve maximum system 
level benefit.  It also illustrates how this methodology can be 
extended to manage both software and observational 
resources onboard a spacecraft to achieve the best possible 
observations. 
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